Лекция профессора А. Тани, Япония - 8 сентября

Приглашаем на лекцию почётного профессора А. Тани, Университет Кейо, Токио, Япония

"Разрешимость в малом основных уравнений для совместной модели атмосферы и океана."

8 сентября, вторник,  17:45 ауд 402 г.к. НГУ

Идея численного предсказания погоды была предложена Ричардсоном в 1920 гг. Он вывел систему уравнений, описывающих движение атмосферы (примитивные уравнения атмосферы), которые похожи на уравнения Навье-Стокса для сжимаемой жидкости. Его попытка оказалась неудачной в основном из-за отсутствия устойчивости в вычислениях, однако в этом направлении было еще много попыток.

В 1969 г. Брайан сформулировал модель циркуляции океана (базовые уравнения для океана), похожие на модель атмосферы Ричардсона, применив гидростатическую аппроксимацию. В этой модели использовались приближение Буссинеска и гипотеза жесткой крышки. Последнее означает, что поверхность океана является фиксированной и плоской. Затем Кроули численно изучил случай со свободной поверхностью, а не с жесткой крышкой.

В данном докладе мы рассматриваем задачу со свободной границей для основных уравнений для совместной модели атмосферы и океана в трехмерной полосе с поверхностным натяжением. Используя так называемые p-координаты и другое преобразование координат, фиксирующее зависящую от времени область, доказывается локальное существование единственного сильного решения в малом по времени в пространстве Соболева-Слободецкого для преобразованной задачи.

Лекция на английском языке.